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A method to obtain the probability distribution of the interarrival times of jump occurrences in systems
driven by state-dependent Poisson noise is proposed. Such a method uses the survivor function obtained by a
modified version of the master equation associated to the stochastic process under analysis. A model for the
timing of human activities shows the capability of state-dependent Poisson noise to generate power-law
distributions. The application of the method to a model for neuron dynamics and to a hydrological model
accounting for land-atmosphere interaction elucidates the origin of characteristic recurrence intervals and
possible persistence in state-dependent Poisson models.
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I. INTRODUCTION

Continuous time processes with jump transitions are very
common in different fields, such as queuing theory and stor-
age problems with application to insurance risk and stock
market modeling �1–3�. These types of stochastic processes
have also been extensively used in theoretical models of neu-
ron dynamics, where the voltage across nerve membrane is
assumed to follow a trajectory with sudden drops caused by
nerve excitations �4–6�, as well as in hydrology to describe
infiltration events in the soil water balance �7–13�. Further
uses can be found in the study of noise-driven transport �14�,
population dynamics �15�, extreme event dynamics �16�, oc-
currence of fires in ecosystems �17,18�, and in the general
theory of stochastic processes �1,19–21�.

One of the most important features of jump processes is
the recurrence time of jump occurrence, i.e., the distribution
of the times � between successive jumps, p����. Although in
many models jumps are often assumed to have constant
probability of occurrence �i.e., Poisson process�, so that p����
is simply exponential �1–3,7,8�, in many systems the prob-
ability of jumps depends on the actual state of the system. In
such cases the frequency of jump occurrence becomes state
dependent �9,18,22�, and the probability distribution �pdf� of
the times between two successive jumps is no longer expo-
nential. The state dependence of the Poisson process can be
the cause of power-law tails of jump intertime distributions,
a fact that could be important in modeling many phenomena,
such as human action executions �23–26�, large-earthquakes
recurrence �27,28�, and solar flaring rates �29,30�.

The purpose of the present work is to develop a method to
obtain p���� for general nonlinear processes driven by deter-
ministic laws and intermittently forced by state-dependent
marked Poisson process. After developing the general theo-
retical framework �Sec. II�, we present three applications re-
lated to the timing of human activities �Sec. III�, neuron
dynamics �Sec. IV�, and a hydrological model for rainfall
persistence �Sec. V�.

II. MATHEMATICAL THEORY

We deal with dynamical systems that can be described
in terms of a single representative stochastic variable,
x�t�, which follows a deterministic trajectory perturbed by
jumps of random timing and amplitudes. The jumps are
modeled as a state-dependent compound Poisson process
F�x , t�=�i=1

N�t�yi��t− ti�, where ��·� is the Dirac delta function
�9�. The times �ti� �i=1,2 , . . . � denote a random variable that
expresses the arrival time of the ith event of a state-
dependent Poisson counting process N�t�=���0

t ��x�s��ds�,
where ��t� is a unit-rate Poisson process and �=��x�t�� is
the jump occurrence rate. The amplitudes of the jumps, yi,
are mutually independent random variables with probability
distribution function h�y ;x� that in general can be state de-
pendent as well. In other words, the transition probability
density per unit time W�z 	x� for a flipping from the state x
into the state z takes the form W�z 	x�=h�z−x ;x���x� and it is
normalized over z to unity �31�.

According to the previous modeling assumptions, the
state of the system, x�t�, is described by the stochastic
equation

dx

dt
= f�x� + F�x,t� , �1�

where f�x� is a deterministic function.
The probability distribution function of x�t�, p�x , t�, satis-

fies the differential Chapman-Kolmogorov forward equation
�1,12,13�

�

�t
p�x,t� = −

�

�x
„f�x�p�x,t�… − ��x�p�x,t�

+ 

−�

+�

��x − z�p�x − z,t�h�z;x − z�dz , �2�

where the terms on the r.h.s. are the contributions due to the
drift f�x�, the jump occurrences which cause the process to
leave the current trajectory, and the jumps that bring the
system to the state x, respectively.

The process defined by Eq. �1� can be also interpreted as
a composition of sequences of deterministic trajectories of
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different durations. Each trajectory starts from a random
value xs and ends at a random value xe. When the system
reaches steady state, the ending extremes �xe� of the trajec-
tories result to be distributed as follows:

pe�x� = ��x�p�x�/��� , �3�

where ��� is the average of the frequency of jump occur-
rences and p�x� is the steady state pdf of Eq. �2�. Such a
distribution can be obtained by considering the probability of
being in x+dx and �independently� jumping during a time
interval dt from that level, i.e., p�x�dx��x�dt, and then nor-
malizing it by the total probability of jumping during the
interval dt, �−�

+���x�p�x�dxdt. The distribution of the starting
points �xs� of the trajectories can be found by convolving
pe�x� with the jump distribution, i.e.,

ps�x� = 

−�

+�

pe�x − z�h�z;x − z�dz . �4�

The duration of the trajectories between xs and xe is distrib-
uted as p���� and is the main focus of the study.

In order to determine p���� it is useful to introduce a
modified version of Eq. �2�,

�

�t
p��x,t� = −

�

�x
�f�x�p��x,t�� − ��x�p��x,t� . �5�

The absence of the integral term in Eq. �5� suggests that
p��x , t� is associated to a process similar to that of Eq. �1�,
with the difference that trajectories stop after the first jump.
Therefore, when Eq. �5� is solved with the initial condition
p��x ,0�= ps�x�, the related solution, p��x , t�, represents the
pdf of x at time t of the ensemble of trajectories originated
from xs �with distribution ps�x�� that have evolved determin-
istically as ẋ= f�x� before the occurrence of a jump. The oc-
currence of jumps in the ensemble of trajectories starting
from xs causes p��x , t� to lose mass at a rate
�−�

+���x�p��x , t�dx. Therefore the area �−�
+�p��x , t�dx tends to

zero as t goes to +�, giving the fraction of trajectories lasting
�without a jump� up to time t. Consequently, p��x ,�� is re-
lated to the probability, F���, that the process x�t� has not
experienced a jump up to time t=� as follows:

F��� = 

−�

+�

p��x,��dx , �6�

which can be interpreted as a survivor function �22,32,33�.
The pdf of the times between jumps, p����, is related to F���
as follows:

p���� = −
d

d�
F��� . �7�

It is worth recalling that the above method is valid for sys-
tems in steady-state, for which it is possible to define the pdf
ps�x� from Eq. �4�.

We underline that the previous derivations generalize the
theory developed in �22�. In fact the systems studied in �22�
are forced by jumps that reinitialize x�t� always at the same
value, so that the jumps occur as a renewal process, since,

after the first jump, the intertimes between consecutive
jumps are independent and identically distributed. Con-
versely, here we deal with processes in which the jumps in
general bring the system to different random states, generat-
ing a dependence of the times between successive jumps on
the previous history of the process.

In the following we will discuss three examples to present
applications of the introduced method and to show the ef-
fects of the state-dependent Poisson noise on the system
dynamics and their jump intertimes. We note that the first
application �Sec. III� regards a system that could be studied
using the method developed in Ref. �22�. Nonetheless, given
its different application and its paradigmatic ability to gener-
ate power-law tails in the intertime pdf, we briefly present it
here.

III. A POSSIBLE MODEL FOR HUMAN BEHAVIOR

A lot of attention has been recently devoted to modeling
the timing of human activities �e.g., emails, phone calls, in-
vestments� and their impact in social, technological, and eco-
nomical dynamics �23–26�. Recent analyses have shown that
the timing of human activities does not tend to follow a
purely random pattern as predicted by the classic Poisson
process, but is affected by feedbacks causing delays and ac-
celerations in relation to their importance, resulting in pos-
sible clustering and heavy tails in the distribution of the in-
tertimes �23–26�. Here we comment on the fact that such
patterns can be still interpreted as a Poisson process, as long
as its rate is related to a suitable state variable, x�t�.

Consider email use: it is reasonable to assume that, upon
the reading of emails, our mind becomes fully concentrated
on it and therefore the “attention,” x�t�, to the other many
tasks is set to zero. The probability of performing an action
related to the email use, such as replying to emails, is at a
maximum at that moment, while it progressively decreases
as the attention to the other tasks grows back again. As a
result, each time our mind is called to focus on email, the
attention to other tasks, x�t�, behaves as a state-dependent
renewal process with negative ageing �1�. For simplicity, we
assume that x�t� is set to zero by the actual use of the emails
and increases linearly in time at a constant rate, i.e.,
f�x�=k=const �0�k�1�. The rate of email use is taken as
inversely proportional to x�t�, as ��x�=1/ �1+x�, since when
the attention to other tasks is higher the probability to use the
email decreases. Once the email is used, x�t� is reset to zero
and the process is assumed to continue like this indefinitely.

As seen in Fig. 1, the system is characterized by bursts of
frequently occurring jumps separated by long periods with-
out jumps. This generates power-law tails in the pdf of the
time of email use �23,26�. It is easy to show that in
the previous specific case p���� is the generalized Pareto
distribution, p����= �1+k��−1−1/k �22�.

The previous behavior can be generalized considering a
stationary process in which the attention level x�t� is always
positive and with jumps that reinitialize the system at x=0
�i.e., h�y ,x�=��y−x�� �22�. In such a case, the point process
of the jump occurrences becomes a state-dependent Poisson
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process and the distribution of the times between jumps
reads

p���� = ��x����exp− 

0

�

��x�u��du� , �8�

where x��� can be derived inverting the relation
�=�0

xdu / f�u�. If f�x� and ��x� have a general form such that
the resulting frequency of jumps in terms of � is
����=g��� / �a+b��, g��� being an arbitrary function and a
and b positive parameters, the jump intertime pdf becomes

p���� = Cg����a + b��−�1+g���/b�exp− 

0

�

ln��a + bu�1/b�

	� d

du
g�u��du� , �9�

where C is a normalization constant. Thus, p���� is a
stretched exponential distribution �34�, that becomes a Pareto
when g��� is constant.

This simple analysis shows that the scaling behavior of
the intertime occurrence of particular phenomena �e.g., hu-
man action execution, large earthquake recurrence, solar flar-
ing rates, fires in ecosystems� might be interpreted as the

result of the dependence of their rate of occurrence on a
variable, x�t�, that characterizes the physical system.

IV. HYPOTHETICAL NEURON MODEL

As an application leading to analytical expressions for the
intertime pdf when the jumps bring the system to random
values, we analyze a simplified model for the dynamics of
the voltage across a nerve membrane. The voltage, v, is as-
sumed to increase exponentially between successive neuron
excitations that cause instantaneous drops �yi� in the voltage
level. Such excitations occur randomly, becoming more
probable as v approaches a threshold vb �see Fig. 2�. There-
fore, we assume that the rate of excitation occurrence de-
pends on v according to an age-specific failure rate of the
form ��v�=k1 / �vb−v�. Such a dependence might be ex-
plained by the fact that changes in the neuron potential
also alter the properties of the synapses �35�, thus influencing
the excitation rates �simplified random threshold models
of this type were previously adopted in �6,5��. To assure
analytical tractability, the voltage reductions, yi, due to
excitations are assumed to be exponentially distributed and
state independent, so that the jump distribution reduces to
h�y�=
 exp�−
y� �e.g., h�z ;x−z� in Eq. �2� is simply h�z��.
The equation driving the voltage dynamics is thus

dv
dt

= k�vb − v� − F�v,t� , �10�

and the corresponding differential Chapman-Kolmogorov
forward equation is

�

�t
p�v,t� = − k

�

�v
„�vb − v�p�v,t�… −

k1

vb − v
p�v,t�

+ 

−�

+� k1

vb − �v − z�
p�v − z,t�
 exp�− 
z�dz .

�11�

Following �1,7�, the steady-state probability distribution of v,
p�v�, can be obtained as follows:

FIG. 1. Example of time series of the variable x�t� �top� and
correspondent steady-state probability distributions of x, p�x�, and
of intertimes between consecutive actions, p����, in a log-log plot
�bottom�. The presence of long periods between actions among fre-
quent executions is evident and is the cause of the power law in
p����. Parameters: k=1/2, a=1/6, b=1, and c=1/4.

FIG. 2. Example of voltage series for the abstract neuron model
with its correspondent pdf of the interarrival time of excitation oc-
currences �inset�. The theoretical p���� �Eq. �16�� is compared to the
histogram numerically obtained using the parameters k=3,
k1=0.003, 
=1, and vb=2.
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p�v� =
C

vb − v
exp�− 
�vb − v� −

k1

k�vb − v�� . �12�

According to Eq. �3�, the distribution of the points before a
jump is

pe�v� =
Ce

�vb − v�2 exp�− 
�vb − v� −
k1

k�vb − v�� , �13�

which, using Eq. �4�, gives ps�v� as follows:

ps�v� = Cs exp�− 
�vb − v� −
k1

k�vb − v�� . �14�

Given ps�v�, Eq. �5� can be solved using the method of
characteristics �36� to obtain

p��v,t� = C� exp�kt − 
�vb − v�ekt −
k1

k�vb − v�� . �15�

In the previous equations, C, Ce, Cs, and C� are normaliza-
tion constants for the respective distributions. Inserting Eq.
�15� in Eqs. �6� and �7�, one finally obtains

p���� =
kek�/2

K1�2C��
�ek�/2C�K0�2ek�/2C�� − K1�2ek�/2C��

+ ek�/2C�K2�2ek�/2C��� , �16�

where C�=��
k1� /k and Kn�·� is the modified Bessel
function �37�.

Figure 2 shows an example of a time series along with the
pdf of the interarrival time of two successive excitations,
p����. The state-dependent nature of the Poisson noise gen-
erates a maximum in the pdf, thus producing a characteristic
recurrence interval at which excitations are more likely to
occur. Even though the model does not account for the re-
fractory period after an excitation �6�, the probability of hav-
ing two immediately successive excitations is considerably
low. Such a behavior depends mainly on the value of k1. In
fact, as k1 decreases, the probability of having an excitation
is reduced and consequently becomes more dependent on the
difference vb−v. Since after a jump vb−v is large, the prob-
ability of having consecutive excitations in the short time is
reduced, so that p��0� becomes closer to 0 as k1 diminishes.
An analogous effect is induced by a reduction in 
, with a
consequent increase of the average amplitude of jumps. In
fact, the higher the jumps are, the longer is the time it takes
to v to get close to vb and therefore to jump again.

V. PERSISTENCE IN RAINFALL EVENTS

A significant fraction of the warm season precipitation in
continental mid-latitude regions is either originated from lo-
cal evaporation recycling or triggered by soil moisture feed-
backs on the atmospheric boundary layer. Consequently, in
such regions there tends to be a dependence of the rainfall
regime on the antecedent soil water conditions. Thus, anoma-
lous dry periods early in the season reduce the probability of

summer rainfall occurrence, possibly locking the system in a
dry condition. On the other hand, high soil water content in
spring may enhance summer rainfall and tend to preserve
wet conditions �9,10�. Here we analyze the simplified model
introduced in �9�, in order to determine the effect that a
soil-moisture dependence of rainfall frequency has on the
distribution of the interarrival times of rainfall events.

Schematically, the soil water balance at the daily time
scale is driven by the stochastic equation �9�

nZr
dx

dt
= − L�x� + F�x,t� , �17�

where x is the relative soil moisture content of the portion of
soil interested by the root, nZr, with n soil porosity and Zr
soil depth, L�x� represents the losses due to evapotranspira-
tion and deep infiltration during interstorm periods, and
F�x , t� are the increments in soil moisture due to infiltration
by rainfall events, that at the daily time scale can be consid-
ered as instantaneous pulses. In order to include the soil-
moisture feedback on precipitation, the frequency of rainfall
events may be assumed to partly depend on x �9�. Since soil
moisture is bounded between 0 �dry soil� and 1 �complete
saturation�, f�0�=0 and the increments of x due to rainfall
events are limited at x=1 by means of a Dirac delta function
at 1−x in the jump distribution �7–9�. Accordingly, assuming
an exponential distribution for the depths of rainfall events,
the pdf of the soil moisture jumps, yi, due to rainfall becomes

h�y ;x� = 
e−
y + ��y − 1 + x�

1−x

�


e−
udu , �18�

for 0�y�1−x and with 1/
=� / �nZr�, where � is the av-
erage amount of water carried by each rainfall event.
Equation �2�, thus, can be written

�

�t
p�x,t� = −

�

�x
„f�x�p�x,t�… − ��x�p�x,t� + 


−�

+�

��x − z�p�x

− z,t�h�z;x − z�dz , �19�

where f�x�=−L�x� / �nZr�. Following the same lines of the
solution of the neural model �Sec. IV�, a formal solution of
the interarrival time of rainfall events can be obtained for a
process with linear decay, f�x�=−k=const for x0 and
f�0�=0, and with rainfall frequency linearly dependent on x,
��x�=a+bx �9�.

The steady-state pdf of x is a mixed one with an atom of
probability in zero �9�,

p�x� = C�1

k
e−�
−a/k�x+bx2/�2k� +

��x�
a

� , �20�

where C is a normalization constant. Given their complexity,
the expressions of pe�x�, ps�x�, and p��x , t� are not reported
here. The rainfall intertime pdf, obtained by numerical inte-
gration of −�0

1�dp��x ,�� /d��dx, according to Eqs. �6� and �7�,
is reported in Fig. 3.

Figure 3 also shows the comparison between the p���� of
a process with linear state-dependent rainfall frequency,
�=a+bx, and the p���� of a process with constant rainfall
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frequency equal to the average of the state-dependent pro-
cess, ���x��=a+b�x�. As shown by the time series, the state-
dependent Poisson noise is responsible for persistence of dry
and wet states which manifests itself in the bi-modality of

the steady-state pdf of x. Such a bi-modality is closely re-
lated to the timing of rainfall occurrences. In fact, when x is
large, the probability of having a rainfall event increases so
that the system tends to remain close to x=1 �saturation�.
Therefore, the probability of having frequent rainfall events
in a short time is higher than that of a similar process with
constant rainfall frequency equal to ���x��. On the other
hand, when x decreases, rainfall events become less frequent
so that the system tends to maintain low soil moisture values
for longer periods. This situation of persistent drought peri-
ods explains the slower decay of the tail of p���� for the
state-dependent rainfall process.

VI. CONCLUSIONS

We introduced a general method to determine the pdf of
the times between successive jumps of steady-state systems
driven by state-dependent Poisson processes that cause
instantaneous jumps with random timing and amplitude.

The dynamics of such systems present interesting proper-
ties that are discussed through different examples. A possible
model for human action execution presented in Sec. III
shows the capability of the state-dependent Poisson process
to generate power-law tails in the jump intertime pdf. The
state dependence of the Poisson noise may also be the cause
of time recurrence of jumps, as suggested by the maximum
in p���� obtained in the neuron model �Sec. IV�. Finally, the
state-dependence of the Poisson process can also explain
possible persistent behaviors in the dynamics of jump events
and the presence of preferential states in the dynamics of x
�Sec. V�. The flexibility and the variety of behaviors shown
by the state-dependent Poisson process make it a good can-
didate for modeling many physical phenomena characterized
by jump transition.
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